The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering

نویسندگان

  • Johnsen
  • Widder
چکیده

In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed. Copyright 1999 Academic Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Measurement of Polarization Properties of Skin using the Ellipsometry Technique

Introduction: The human skin is an active medium from the optical point of view. Therefore, the diagnostic and therapeutic techniques employing light are increasing. Current optical techniques are based on the measurement of the intensity of reflected absorbed or backscattered light from or within skin. Studies have shown that biological tissues, and in particular skin, demonstrate polarization...

متن کامل

The Effect of Lyophilization on Light Transmission of Amniotic Membrane: A Comparison with Rabbit Cornea

Background & Aims: Amniotic membrane persists for a long time after ocular transplantation (as corneal substitute) and can affect light transmission (transparency). The aim of this study was to evaluate the transparency of amniotic membrane after freeze-drying (lyophilization) and to compare the results with transparency of rabbit cornea. Methods: Transparency of rabbits’ corneas and fresh and ...

متن کامل

اثر شفافیت الکترولیت بر پس‌پراکندگی نور از لایه پس‌پراکننده نوری در سلول‌های خورشیدی رنگدانه‌ای

Conventionally, a film of TiO2 particles of ~300 nm size is employed in DSCs as the back reflector film to enhance the light harvesting. In this study, two electrolytes with different transparencies, iodide-based and cobalt-based electrolytes, were used to investigate the transparency effect of electrolytes on light back-scattering from back scattering layer and also to study its effect on the ...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Effect of tocopherol on Pluronic microemulsions: turbidity studies and Dynamic light scattering and dynamic surface tension measurements

The development and design of the biocompatible and biodegradable thermodynamically stable micellar and microemulsion transparent dispersions to reduce the free and unbounded drugs concentration in the blood is a basic challenge in field of drug efficacy and bioavailability of drugs. In the current work, solubilization capacity of the drug (Tocopherol), oil (Ethyl Butyrate), and oil+drug (1:1 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 199 2  شماره 

صفحات  -

تاریخ انتشار 1999